Part Number Hot Search : 
MP7720DP BD675 PE8844DV HT95A200 CONTROLS TLP131GB FAN760 ST1S10P
Product Description
Full Text Search
 

To Download LT1215 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 LT1215/lt1216 23mhz, 50v/ m s, single supply dual and quad precision op amps n slew rate: 50v/ m s typ n gain-bandwidth product: 23mhz typ n fast settling to 0.01% 2v step to 200 m v: 250ns typ 10v step to 1mv: 480ns typ n excellent dc precision in all packages input offset voltage: 450 m v max input offset voltage drift: 10 m v/ c max input offset current: 120na max input bias current: 600na max open-loop gain: 1000v/mv min n single supply operation input voltage range includes ground output swings to ground while sinking current n low input noise voltage: 12.5nv/ ? hz typ n low input noise current: 0.5pa/ ? hz typ n specified on 3.3v, 5v and 15v n large output drive current: 30ma min n low supply current per amplifier: 6.6ma max n dual in 8-pin dip and so-8 n quad in 14-pin dip and narrow so-16 the lt ? 1215 is a dual, single supply precision op amp with a 23mhz gain-bandwidth product and a 50v/ m s slew rate. the lt1216 is a quad version of the same amplifier. the dc precision of the LT1215/lt1216 eliminates trims in most systems while providing high frequency perfor- mance not usually found in single supply amplifiers. the LT1215/lt1216 will operate on any supply greater than 2.5v and less than 36v total. these amplifiers are specified on single 3.3v, single 5v and 15v supplies, and only require 5ma of quiescent supply current per ampli- fier. the inputs can be driven beyond the supplies without damage or phase reversal of the output. the minimum output drive is 30ma, ideal for driving low impedance loads. n 2.5v full-scale 12-bit systems: v os 0.75 lsb n 10v full-scale 16-bit systems: v os 3 lsb n active filters n photo diode amplifiers n dac current to voltage amplifiers n battery-powered systems single supply instrumentation amplifier frequency response frequency (hz) gain (db) 30 20 10 0 ?0 ?0 ?0 ?0 ?0 ?0 ?0 1k 100k 1m 10m 1215/16 ta02 10k differential input common mode input + v in 5v 1/2 LT1215 113 w v out 1215/16 ta01 0.1 m f + 113 w 1020 w v in + 1020 w 1/2 LT1215 note: 0.1% resistors give cmrr 3 68db. gain is 10.0v/v. common mode input range is from 0.3v to 3.0v. bandwidth is 2.8mhz. note: for applications requiring less slew rate, see the lt1211/lt1212 and lt1213/lt1214 data sheets. applicatio s u features typical applicatio u descriptio u , ltc and lt are registered trademarks of linear technology corporation.
2 LT1215/lt1216 a u g w a w u w a r b s o lu t exi t i s total supply voltage (v + to v C ) ............................. 36v input current ..................................................... 15ma output short-circuit duration (note 2) ........ continuous operating temperature range LT1215c/lt1216c (note 3) .............. C 40 c to 85 c LT1215m (obsolete) ............... C55 c to 125 c specified temperature range LT1215c/lt1216c (note 4) .............. C 40 c to 85 c LT1215m (obsolete) ............... C55 c to 125 c storage temperature range ................ C 65 c to 150 c junction temperature (note 5) ............................. 150 c plastic package (cn8, cs8, cn, cs)................ 150 c ceramic package (mj8) (obsolete) .......... 175 c lead temperature (soldering, 10 sec)................. 300 c wu u package / o rder i for atio n8 package 8-lead pdip 1 2 3 4 8 7 6 5 top view out a in a +in a v v + out b in b +in b b a LT1215cs8 order part number LT1215cn8 LT1215acn8 j8 package 8-lead cerdip t jmax = 175 c, q ja = 100 c/w 1 2 3 4 8 7 6 5 top view s8 package 8-lead plastic so b a out a in a +in a v v + out b in b +in b s8 part marking 1215 order part number order part number order part number lt1216cs t jmax = 150 c, q ja = 150 c/w top view s package 16-lead plastic so 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 out a ?n a +in a v + +in b in b out b nc out d in d +in d v +in c in c out c nc a c b d t jmax = 150 c, q ja = 100 c/w lt1216cn t jmax = 150 c, q ja = 70 c/w n package 14-lead pdip out a ?n a +in a v + +in b ?n b out b out d ?n d +in d v +in c ?n c out c 1 2 3 4 5 6 7 14 13 12 11 10 9 8 d a c b top view (note 1) t jmax = 150 c, q ja = 100 c/w LT1215mj8 LT1215amj8 obsolete package consider the n8 package for alternate source consult ltc marketing for parts specified with wider operating temperature ranges.
3 LT1215/lt1216 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, t a = 25 c, unless otherwise noted. LT1215ac LT1215c/LT1215m LT1215am lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 125 300 150 450 m v d v os long-term input offset 0.8 1.0 m v/mo d time voltage stability i os input offset current 35 80 35 120 na i b input bias current 420 500 420 600 na input noise voltage 0.1hz to 10hz 400 400 nv p-p e n input noise voltage density f o = 10hz 15.0 15.0 nv/ ? hz f o = 1000hz 12.5 12.5 nv/ ? hz i n input noise current density f o = 10hz 7.0 7.0 pa/ ? hz f o = 1000hz 0.5 0.5 pa/ ? hz input resistance (note 6) differential mode 10 40 10 40 m w common mode 200 200 m w input capacitance f = 1mhz 10 10 pf input voltage range 3.0 3.2 3.0 3.2 v 0 C 0.2 0 C 0.2 v cmrr common mode rejection ratio v cm = 0v to 3v 90 108 86 108 db psrr power supply rejection ratio v s = 2.5v to 12.5v 96 115 93 115 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 150 600 150 600 v/mv maximum output voltage swing output high, no load 4.30 4.39 4.30 4.39 v (note 7) output high, i source = 1ma 4.20 4.30 4.20 4.30 v output high, i source = 30ma 3.60 3.75 3.60 3.75 v output low, no load 0.005 0.008 0.005 0.008 v output low, i sink = 1ma 0.030 0.050 0.030 0.050 v output low, i sink = 30ma 0.630 1.000 0.630 1.000 v i o maximum output current (note 11) 30 50 30 50 ma sr slew rate a v = C 2 30 30 v/ m s gbw gain-bandwidth product f = 100khz 23 23 mhz i s supply current per amplifier 3.6 4.75 6.6 3.6 4.75 6.6 ma minimum supply voltage single supply 2.2 2.5 2.2 2.5 v full power bandwidth a v = 1, v o = 2.5v p-p 2.6 2.6 mhz t r , t f rise time, fall time a v = 1, 10% to 90%, v o = 100mv 16 16 ns os overshoot a v = 1, v o = 100mv 25 25 % t pd propagation delay a v = 1, v o = 100mv 13 13 ns t s settling time 0.01%, a v = 1, d v o = 2v 250 250 ns open-loop output resistance i o = 0ma, f = 10mhz 40 40 w thd total harmonic distortion a v = 1, v o = 1v rms , 20hz to 20khz 0.001 0.001 % package number of max tc v os ceramic (j) plastic dip surface mount op amps t a range max v os (25 c) ( d v os / d t) obsolete (n) (s) two (dual) C 40 c to 85 c 300 m v 2.5 m v/ c LT1215acn8 450 m v5 m v/ c LT1215cn8 450 m v10 m v/ c LT1215cs8 C55 c to 125 c 300 m v 2.5 m v/ c LT1215amj8 450 m v5 m v/ c LT1215mj8 four (quad) C 40 c to 85 c 450 m v10 m v/ c lt1216cn lt1216cs available optio s u
4 LT1215/lt1216 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, 0 c t a 70 c, unless otherwise noted. LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 200 350 250 550 m v d v os input offset voltage drift 8-pin dip package 1 2.5 2 5 m v/ c d t (note 6) 14-pin dip, so package 3 10 m v/ c i os input offset current 35 100 35 170 na i b input bias current 450 530 450 830 na input voltage range 2.9 3.1 2.9 3.1 v 0.1 C 0.1 0.1 C 0.1 v cmrr common mode rejection ratio v cm = 0.1v to 2.9v 89 108 85 108 db psrr power supply rejection ratio v s = 2.6v to 12.5v 95 114 92 114 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 100 600 100 600 v/mv maximum output voltage swing output high, no load 4.20 4.33 4.20 4.33 v (note 7) output high, i source = 1ma 4.10 4.24 4.10 4.24 v output high, i source = 20ma 3.70 3.89 3.70 3.89 v output low, no load 0.006 0.009 0.006 0.009 v output low, i sink = 1ma 0.035 0.055 0.035 0.055 v output low, i sink = 20ma 0.500 0.725 0.500 0.725 v i s supply current per amplifier 3.3 5.2 7.5 3.3 5.2 7.5 ma v s = 5v, v cm = 0.5v, v out = 0.5v, C 40 c t a 85 c, unless otherwise noted. (note 4) LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 200 400 250 600 m v d v os input offset voltage drift 8-pin dip package 1 2.5 2 5 m v/ c d t (note 6) 14-pin dip, so package 3 10 m v/ c i os input offset current 35 110 35 190 na i b input bias current 450 550 450 850 na input voltage range 2.8 3.0 2.8 3.0 v 0.2 0 0.2 0 v cmrr common mode rejection ratio v cm = 0.2v to 2.8v 88 108 84 108 db psrr power supply rejection ratio v s = 2.7v to 12.5v 94 114 91 114 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 100 600 100 600 v/mv maximum output voltage swing output high, no load 4.10 4.30 4.10 4.30 v (note 7) output high, i source = 1ma 4.00 4.16 4.00 4.16 v output high, i source = 20ma 3.60 3.82 3.60 3.82 v output low, no load 0.006 0.010 0.006 0.010 v output low, i sink = 1ma 0.035 0.060 0.035 0.060 v output low, i sink = 20ma 0.500 0.750 0.500 0.750 v i s supply current per amplifier 2.9 5.3 7.6 2.9 5.3 7.6 ma
5 LT1215/lt1216 5v e lectr ic al c c hara terist ics v s = 5v, v cm = 0.5v, v out = 0.5v, C 55 c t a 125 c, unless otherwise noted. LT1215am LT1215m symbol parameter conditions min typ max min typ max units v os input offset voltage 250 450 350 750 m v d v os input offset voltage drift 1 2.5 2 5 m v/ c d t (note 6) i os input offset current 35 150 35 200 na i b input bias current 450 600 450 700 na input voltage range 2.8 3.0 2.8 3.0 v 0.4 0.2 0.4 0.2 v cmrr common mode rejection ratio v cm = 0.4v to 2.8v 87 108 82 108 db psrr power supply rejection ratio v s = 2.7v to 12.5v 93 114 90 114 db a vol large-signal voltage gain v o = 0.05v to 3.7v, r l = 500 w 50 100 50 100 v/mv maximum output voltage swing output high, no load 4.00 4.20 4.00 4.20 v (note 7) output high, i source = 1ma 3.90 4.10 3.90 4.10 v output high, i source = 20ma 3.50 3.80 3.50 3.80 v output low, no load 0.007 0.012 0.007 0.012 mv output low, i sink = 1ma 0.040 0.070 0.040 0.070 mv output low, i sink = 20ma 0.700 1.000 0.700 1.000 mv i s supply current per amplifier 2.3 5.5 8.4 2.3 5.5 8.4 ma v s = 15v, v cm = 0v, v out = 0v, t a = 25 c, unless otherwise noted. LT1215ac LT1215c/LT1215m LT1215am lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 225 500 250 650 m v i os input offset current 30 80 30 110 na i b input bias current 360 500 360 550 na input voltage range 13.0 13.2 13.0 13.2 v C15.0 C 15.2 C15.0 C 15.2 v cmrr common mode rejection ratio v cm = C15v to 13v 90 108 86 108 db psrr power supply rejection ratio v s = 2v to 18v 96 110 93 110 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 1000 3500 1000 3500 v/mv maximum output voltage swing output high, i source = 30ma 13.5 13.75 13.5 13.75 v output low, i sink = 30ma C14 C14.4 C14 C14.4 v i o maximum output current (note 11) 30 50 30 50 ma sr slew rate a v = C 2 (note 8) 40 50 40 50 v/ m s gbw gain-bandwidth product f = 100khz 15 23 15 23 mhz i s supply current per amplifier 3.6 5.7 8 3.6 5.7 8 ma channel separation v o = 10v, r l = 2k 128 140 128 140 db minimum supply voltage equal split supplies 1.7 2 1.7 2v full-power bandwidth a v = 1, v o = 20v p-p 750 750 khz settling time 0.01%, a v = 1, d v o = 10v 480 480 ns + 15v e lectr ic al c c hara terist ics C
6 LT1215/lt1216 v s = 15v, v cm = 0v, v out = 0v, 0 c t a 70 c, unless otherwise noted. + C 15v e lectr ic al c c hara terist ics LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 325 550 400 750 m v d v os input offset voltage drift 8-pin dip package 1 2.5 2 5 m v/ c d t (note 6) 14-pin dip, so package 3 10 m v/ c i os input offset current 30 100 30 160 na i b input bias current 360 530 360 800 na input voltage range 12.9 13.1 12.9 13.1 v C14.9 C15.1 C14.9 C15.1 v cmrr common mode rejection ratio v cm = C14.9v to 12.9v 89 108 85 108 db psrr power supply rejection ratio v s = 2.1v to 18v 95 110 92 110 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 800 3000 800 3000 v/mv maximum output voltage swing output high, i source = 20ma 13.7 13.9 13.7 13.9 v output low, i sink = 20ma C 14.2 C 14.5 C 14.2 C 14.5 v i s supply current per amplifier 3.3 6.3 9.2 3.3 6.3 9.2 ma v s = 15v, v cm = 0v, v out = 0v, C 55 c t a 125 c, unless otherwise noted. LT1215am LT1215m symbol parameter conditions min typ max min typ max units v os input offset voltage 350 650 500 950 m v d v os input offset voltage drift 1 2.5 2 5 m v/ c d t (note 6) i os input offset current 30 150 30 200 na i b input bias current 360 600 360 700 na input voltage range 12.8 13.0 12.8 13.0 v C14.6 C14.8 C14.6 C14.8 v cmrr common mode rejection ratio v cm = C 14.6v to 12.8v 87 108 82 108 db psrr power supply rejection ratio v s = 2.2v to 15v 93 110 90 110 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 500 2000 500 2000 v/mv maximum output voltage swing output high, i source = 20ma 13.4 13.8 13.4 13.8 v output low, i sink = 20ma C14 C14.5 C14 C14.5 v i s supply current per amplifier 2.3 7 10.3 2.3 7 10.3 ma LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 325 600 400 800 m v d v os input offset voltage drift 8-pin dip package 1 2.5 2 5 m v/ c d t (note 6) 14-pin dip, so package 3 10 m v/ c i os input offset current 30 110 30 180 na i b input bias current 360 550 360 820 na input voltage range 12.8 13.0 12.8 13.0 v C14.8 C15.0 C14.8 C15.0 v cmrr common mode rejection ratio v cm = C 14.8v to 12.8v 88 108 84 108 db psrr power supply rejection ratio v s = 2.2v to 18v 94 110 91 110 db a vol large-signal voltage gain v o = 0v to 10v, r l = 2k 800 2500 800 2500 v/mv maximum output voltage swing output high, i source = 20ma 13.6 13.8 13.6 13.8 v output low, i sink = 20ma C 14.1 C 14.5 C 14.1 C 14.5 v i s supply current per amplifier 2.9 6.5 9.5 2.9 6.5 9.5 ma v s = 15v, v cm = 0v, v out = 0v, C 40 c t a 85 c, unless otherwise noted. (note 4)
7 LT1215/lt1216 3.3v e lectr ic al c c hara terist ics v s = 3.3v, v cm = 0.5v, v out = 0.5v, t a = 25 c, unless otherwise noted. (note 8) v s = 3.3v, v cm = 0.5v, v out = 0.5v, 0 c t a 70 c, unless otherwise noted. (note 9) v s = 3.3v, v cm = 0.5v, v out = 0.5v, C 40 c t a 85 c, unless otherwise noted. (notes 4, 9) v s = 3.3v, v cm = 0.5v, v out = 0.5v, C 55 c t a 125 c, unless otherwise noted. (note 9) LT1215ac LT1215c/LT1215m LT1215am lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 125 300 150 450 m v input voltage range (note 10) 1.3 1.5 1.3 1.5 v 0 C 0.2 0 C 0.2 v maximum output voltage swing output high, no load 2.60 2.69 2.60 2.69 v output high, i source = 1ma 2.50 2.60 2.50 2.60 v output high, i source = 30ma 1.90 2.05 1.90 2.05 v output low, no load 0.005 0.008 0.005 0.008 v output low, i sink = 1ma 0.035 0.050 0.035 0.050 v output low, i sink = 30ma 0.700 1.000 0.700 1.000 v i o maximum output current 30 50 30 50 ma LT1215am LT1215m symbol parameter conditions min typ max min typ max units v os input offset voltage 250 450 350 750 m v input voltage range (note 10) 1.1 1.3 1.1 1.3 v 0.4 0.2 0.4 0.2 v maximum output voltage swing output high, no load 2.30 2.50 2.30 2.50 v output high, i source = 1ma 2.20 2.40 2.20 2.40 v output high, i source = 20ma 1.80 2.10 1.80 2.10 v output low, no load 0.007 0.012 0.007 0.012 v output low, i sink = 1ma 0.040 0.070 0.040 0.070 v output low, i sink = 20ma 0.700 1.000 0.700 1.000 v LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 200 350 250 550 m v input voltage range (note 10) 1.2 1.4 1.2 1.4 v 0.1 C 0.1 0.1 C 0.1 v maximum output voltage swing output high, no load 2.50 2.63 2.50 2.63 v output high, i source = 1ma 2.40 2.54 2.40 2.54 v output high, i source = 20ma 2.00 2.19 2.00 2.19 v output low, no load 0.006 0.009 0.006 0.009 v output low, i sink = 1ma 0.035 0.055 0.035 0.055 v output low, i sink = 20ma 0.500 0.725 0.500 0.725 v LT1215ac LT1215c/lt1216c symbol parameter conditions min typ max min typ max units v os input offset voltage 200 400 250 600 m v input voltage range (note 10) 1.1 1.3 1.1 1.3 v 0.2 0 0.2 0 v maximum output voltage swing output high, no load 2.40 2.50 2.40 2.50 v output high, i source = 1ma 2.30 2.46 2.30 2.46 v output high, i source = 20ma 1.90 2.12 1.90 2.12 v output low, no load 0.006 0.010 0.006 0.010 v output low, i sink = 1ma 0.035 0.060 0.035 0.060 v output low, i sink = 20ma 0.500 0.750 0.500 0.750 v
8 LT1215/lt1216 note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. note 2: a heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely. note 3: the LT1215c/lt1216c are guaranteed functional over the operating temperature range of C 40 c to 85 c. the LT1215m is guaranteed functional over the operating temperature range of C55 c to 125 c. note 4: the LT1215c/lt1216c are guaranteed to meet specified performance from 0 c to 70 c. the LT1215c/lt1216c are designed, characterized and expected to meet specified performance from C 40 c to 85 c but are not tested or qa sampled at these temperatures. for guaranteed i-grade parts consult the factory. the LT1215m is guaranteed to meet specified performance from C 55 c to 125 c. note 5: t j is calculated from the ambient temperature t a and power dissipation p d according to the following formulas: LT1215mj8, LT1215amj8: t j = t a + (p d ? 100 c/w) LT1215cn8, LT1215acn8: t j = t a + (p d ? 100 c/w) LT1215cs8: t j = t a + (p d ? 150 c/w) lt1216cn: t j = t a + (p d ? 70 c/w) lt1216cs: t j = t a + (p d ? 100 c/w) note 6: this parameter is not 100% tested. note 7: guaranteed by correlation to 3.3v and 15v tests. note 8: slew rate is measured between 8.5v on an output swing of 10v on 15v supplies. note 9: most LT1215/lt1216 electrical characteristics change very little with supply voltage. see the 5v tables for characteristics not listed in the 3.3v table. note 10: guaranteed by correlation to 5v and 15v tests. note 11: guaranteed by correlation to 3.3v tests. cc hara terist ics uw a t y p i ca lper f o r c e e lectr ic al c c hara terist ics input offset voltage ( v) 525 percent of units (%) 50 45 40 35 30 25 20 15 10 5 0 225 75 225 1215/16 g04 375 ?5 375 525 LT1215 n8 package LT1215 j8 package v s = 5v distribution of offset voltage drift distribution of input offset voltage with temperature distribution of input offset voltage offset voltage drift with temperature ( v/ c) ?0 percent of units (%) 50 40 30 20 10 0 6 1215/16 g08 ? ? 2 10 LT1215 s8 package lt1216 n package lt1216 s package v s = 5v ? ? 0 4 8 input offset voltage ( v) 750 percent of units (%) 30 25 20 15 10 5 0 450 150 150 450 750 1215/16 g09 LT1215 s8 package lt1216 n package lt1216 s package v s = 15v input offset voltage ( v) 525 percent of units (%) 50 45 40 35 30 25 20 15 10 5 0 225 75 225 1215/16 g07 375 ?5 375 525 LT1215 s8 package lt1216 n package lt1216 s package v s = 5v offset voltage drift with temperature ( v/ c) ? percent of units (%) 50 40 30 20 10 0 3 1215/16 g05 ? ? 1 5 LT1215 n8 package LT1215 j8 package v s = 5v ? ? 0 2 4 input offset voltage ( v) 750 percent of units (%) 30 25 20 15 10 5 0 450 150 150 450 750 1215/16 g06 LT1215 n8 package LT1215 j8 package v s = 15v distribution of offset voltage drift distribution of input offset distribution of input offset voltage with temperature voltage
9 LT1215/lt1216 cc hara terist ics uw a t y p i ca lper f o r c e voltage gain, phase vs gain-bandwidth product, voltage gain vs frequency frequency phase margin vs supply voltage frequency (hz) 100k voltage gain (db) 60 40 20 0 ?0 1m 10m 100m 1215/16 g11 100 80 60 40 20 0 ?0 ?0 ?0 phase shift (deg) phase gain v s = 5v v s = 15v v s = 5v v s = 15v c l = 20pf r l = 2k total supply voltage (v) 1 gain-bandwidth product (mhz) 23 22 21 20 19 18 17 10 40 1215/16 g12 60 50 40 30 20 10 0 3 5 7 20 30 phase margin (deg) t a = 55? t a = 25? t a = 125? t a = 25?, 125? t a = 55? frequency (hz) 1 voltage gain (db) 100m 1215/16 g10 100 10k 1m 140 120 100 80 60 40 20 0 ?0 10 1k 100k 10m c l = 20pf r l = 2k v s = 5v v s = 15v temperature (?) ?0 slew rate (v/ m s) 60 50 40 30 20 10 ?5 05075 1215/16 g13 100 125 25 v s = 15v v s = 5v t a = 25? a v = 2 r l = 10k slew rate vs temperature slew rate vs supply voltage capacitive load handling frequency (hz) output swing (v p-p ) 5 4 3 2 1 0 10k 100k 1m 1215/16 g16 1k a v = 1 a v = 1 v s = 5v total supply voltage (v) 0 slew rate (v/ m s) 8 16 20 36 412 24 28 32 65 55 45 35 25 15 5 1215/16 g14 a v = 2 r l = 10k t a = 125? t a = 25? t a = 55? frequency (hz) total harmonic distortion and noise (%) 10 1k 10k 100k 1215/16 g18 100 0.1 0.01 0.001 0.0001 v s = 5v v o = 3v p-p r l = 1k a v = 10 a v = 1 undistorted output swing undistorted output swing total harmonic distortion and vs frequency, v s = 5v vs frequency, v s = 15v noise vs frequency frequency (hz) output swing (v p-p ) 30 28 26 24 22 20 18 16 14 12 10 10k 100k 1m 1215/16 g17 1k v s = ?5v a v = 1 a v = 1 capacitive load (pf) 10 overshoot (%) 80 70 60 50 40 30 20 10 0 100 1000 1216/ g15 a v = 1 a v = 5 a v = 10 v s = 5v
10 LT1215/lt1216 cc hara terist ics uw a t y p i ca lper f o r c e temperature (?) ?0 saturation voltage, v + ?v out (v) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 25 75 ?5 0 50 100 125 i source = 30ma v s = 5v i source = 10ma i source = 1ma i source = 10 m a 1215/16 g21 total supply voltage (v) 0 open-loop voltage gain (v/mv) 8 16 20 36 412 24 28 32 7k 6k 5k 4k 3k 2k 1k 0 1215/16 g19 t a = 25? t a = 55? r l = 2k t a = 125? open-loop voltage gain positive output saturation vs supply voltage open-loop gain, v s = 5v voltage vs temperature r l = 2k r l = 500 w output short-circuit current channel separation vs frequency vs temperature output impedance vs frequency frequency (hz) 10k output impedance ( w ) 1000 100 10 1 0.1 0.01 100k 1m 10m 1215/16 g27 a v = 100 v s = 15v a v = 10 a v = 1 case temperature (?) ?0 output short-circuit current (ma) 70 60 50 40 30 25 75 ?5 0 50 100 125 1215/16 g26 v s = 5v sourcing v s = ?5v sinking or sourcing temperature (?) ?0 saturation voltage, v out ?v (mv) 1000 100 10 1 25 125 1215/16 g24 i sink = 30ma v s = 5v 0 25 50 100 75 i sink = 10ma i sink = 1ma i sink = 10 m a negative output saturation voltage gain vs load resistance open-loop gain, v s = 15v voltage vs temperature r l = 2k r l = 500 w load resistance ( ) 10 open-loop voltage gain (v/mv) 10k 1k 100 10 100 1k 10k 1215/16 g22 t a = 25 c v s = 5v v s = 15v frequency (hz) channel separation (db) 140 130 120 110 100 90 80 70 60 50 40 30 10k 100k 10m 1215/16 g25 1m v s = 15v t a = 25? input, 5 m v/div 01 23 4 output (v) 1215/16 g20 C10 0 10 output (v) 1215/16 g23 input, 5 m v/div
11 LT1215/lt1216 250 m v/div 50ns/div v s = 5v a v = 1 1215/16 g30 500mv/div 5v settling cc hara terist ics uw a t y p i ca lper f o r c e 15v small-signal response 50ns/div v s = 15v a v = 1 1215/16 g34 5v small-signal response 50ns/div v s = 5v a v = 1 1215/16 g34 settling time to 0.01% vs output step settling time (ns) 200 output step (v) 300 400 1215/16 g36 10 8 6 4 2 0 ? ? ? ? ?0 500 noninverting inverting v s = ?5v 200ns/div v s = 15v a v = C1 r f = r g = 1k 1215/16 g32 10v 0v C10v 15v large-signal response 3v 0v 100ns/div v s = 5v a v = C1 r f = r g = 1k c f = 20pf 1215/16 g31 5v large-signal response 10v 0v C10v 200ns/div v s = 15v a v = 1 1215/16 g29 15v large-signal response 3v 0v 200ns/div v s = 5v a v = 1 1215/16 g28 5v large-signal response 1mv/div 2v/div 100ns/div v s = 15v a v = C1 1215/16 g33 15v settling 20mv/div 20mv/div
12 LT1215/lt1216 cc hara terist ics uw a t y p i ca lper f o r c e input bias current vs common mode range input bias current vs temperature common mode voltage vs temperature time after power-up (sec) 0 change in offset voltage ( m v) 20 15 10 5 0 ? ?0 ?5 ?0 160 1215/16 g03 40 80 120 200 180 140 100 60 20 v s = 2.5v r l = 4 typical amplifiers input noise current, noise common mode rejection ratio input referred power supply voltage density vs frequency vs frequency rejection ratio vs frequency supply current vs supply voltage supply current vs temperature warm-up drift vs time supply voltage (v) 0 supply current per amplifier (ma) 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2 4 5 1215/16 g01 13 t a = 125? t a = 25? t a = 55? temperature (?) common-mode range (v) v + v + ? v + ? 1215/16 g39 v +1 v v ? ?0 25 75 ?5 0 50 100 125 common-mode voltage (v) ? input bias current (na) 0 100 200 300 400 500 3 1215/16 g38 0 1 2 4 t a = 25? t a = 55? v s = 5v t a = 125? frequency (hz) 10k common-mode rejection ratio (db) 110 100 90 80 70 60 50 40 30 20 10 100k 1m 10m 1215/16 g41 v s = 5v frequency (hz) 120 110 100 90 80 70 60 50 40 30 20 1k 100k 1m 10m 1215/16 g42 10k negative supply power supply rejection ratio (db) v s = 15v a v = 100 positive supply temperature (?) ?0 supply current per amplifier (ma) 8 7 6 5 4 3 2 ?5 05075 1215/16 g02 100 125 25 v s = 15v v s = 5v temperature (?) ?0 input bias current (na) 400 380 360 340 320 300 280 260 240 25 75 ?5 0 50 100 125 1215/16 g37 i os +i b ? b v s = 5v frequency (hz) 20 18 16 14 12 10 8 6 4 2 0 10 1k 10k 100k 1215/16 g40 100 current noise input noise current density (pa/ ? hz) input noise voltage density (nv/ ? hz) v s = 15v t a = 25? r s = 0 w voltage noise
13 LT1215/lt1216 u s a o pp l ic at i wu u i for atio supply voltage the LT1215/lt1216 op amps are fully functional and all internal bias circuits are in regulation with 2.2v of supply. the amplifiers will continue to function with as little as 1.5v, although the input common mode range and the phase margin are about gone. the minimum operating supply voltage is guaranteed by the psrr tests which are done with the input common mode equal to 500mv and a minimum supply voltage of 2.5v. the LT1215/lt1216 are guaranteed over the full C 55 c to 125 c range with a minimum supply voltage of 2.7v. the positive supply pin of the LT1215/lt1216 should be bypassed with a small capacitor (about 0.01 m f) within an inch of the pin. when driving heavy loads and for good settling time, an additional 4.7 m f capacitor should be used. when using split supplies, the same is true for the negative supply pin. power dissipation the LT1215/lt1216 amplifiers combine high speed and large output current drive into very small packages. be- cause these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. to insure that the LT1215/ lt1216 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature. the worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the ic due to the load. the quiescent supply current of the LT1215/lt1216 has a positive tem- perature coefficient. the maximum supply current of each amplifier at 125 c is given by the following formula: i smax = 8.4 + 0.076 ? (v s C 5) in ma v s is the total supply voltage. the power in the ic due to the load is a function of the output voltage, the supply voltage and load resistance. the worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. for example, calculate the worst case power dissipation while operating on 15v supplies and driving a 500 w load. i smax = 8.4 + 0.076 ? (30 C 5) = 10.3ma p dmax = 2 ? v s ? i smax + (v s C v omax ) ? v omax /r l p dmax = 2 ? 15v ? 10.3ma + (15v C 7.5v) ? 7.5v/500 = 0.309 + 0.113 = 0.422 watt per amp if this is the dual LT1215, the total power in the package is twice that, or 0.844w. now calculate how much the die temperature will rise above the ambient. the total power dissipation times the thermal resistance of the package gives the amount of temperature rise. for this example, in the so-8 surface mount package, the thermal resistance is 150 c/w junction-to-ambient in still air. temperature rise = p dmax ? q ja = 0.844w ? 150 c/w = 126.6 c the maximum junction temperature allowed in the plastic package is 150 c. therefore the maximum ambient al- lowed is the maximum junction temperature less the temperature rise. maximum ambient = 150 c C 126.6 c = 23.4 c that means the so-8 dual can only be operated at or below room temperature on 15v supplies with a 500 w load. obviously this is not recommended. lowering the supply voltage is recommended, or use the dip packaged part. as a guideline to help in the selection of the LT1215/ lt1216, the following table describes the maximum sup- ply voltage that can be used with each part based on the following assumptions: 1. the maximum ambient is 70 c or 125 c depending on the part rating. 2. the load is 500 w , includes the feedback resistors. 3. the output can be anywhere between the supplies. part max supplies max power at max t a LT1215mj8 15.0v or 10.3v 500mw LT1215cn8 20.3v or 14.5v 800mw LT1215cs8 15.7v or 10.8v 533mw lt1216cn 16.4v or 11.4v 1143mw lt1216cs 13.0v or 8.7v 800mw
14 LT1215/lt1216 u s a o pp l ic at i wu u i for atio inputs typically at room temperature, the inputs of the LT1215/ lt1216 can common mode 400mv below ground (v C ) and to within 1.5v of the positive supply with the amplifier still functional. however the input bias current and offset voltage will shift as shown in the characteristic curves. for full precision performance, the common mode range should be limited between ground (v C ) and 2v below the positive supply. when either of the inputs is taken below ground (v C ) by more than about 700mv, that input current will increase dramatically. the current is limited by internal 100 w resistors between the input pins and diodes to each supply. the output will remain low (no phase reversal) for inputs 1.3v below ground (v C ). if the output does not have to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to 8v below ground. there are no clamps across the inputs of the LT1215/ lt1216 and therefore each input can be forced to any voltage between the supplies. the input current will re- main constant at about 360na over most of this range. when an input gets closer than 2v to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. if the inverting input is held more positive than the noninverting input by 200mv or more, while at the same time the noninverting input is within 300mv of ground (v C ), then the supply current will increase by 5ma and the noninverting input current will increase to about 100 m a. this should be kept in mind in comparator applications where the inverting input stays above ground (v C ) and the noninverting input does not. output the output of the LT1215/lt1216 will swing to within 0.61v of the positive supply with no load. the open-loop output resistance, when the output is driven hard into the positive rail, is about 100 w as the output starts to source current; this resistance drops to about 20 w as the current increases. therefore when the output sources 1ma, the output will swing to within 0.7v of the positive supply. while sourcing 30ma, it is within 1.25v of the positive supply. the output of the LT1215/lt1216 will swing to within 5mv of the negative supply while sinking zero current. thus, in a typical single supply application with the load going to ground, the output will go to within 5mv of ground. the open-loop output resistance when the output is driven hard into the negative rail is about 25 w at low currents and reduces to about 21 w at high currents. therefore when the output sinks 1ma, the output is about 30mv above the negative supply and while sinking 30ma, it is about 630mv above it. the output of the LT1215/lt1216 has reverse-biased diodes to each supply. if the output is forced beyond either supply, unlimited currents will flow. if the current is transient and limited to several hundred ma, no damage will occur. feedback components because the input currents of the LT1215/lt1216 are less than 600na, it is possible to use high value feedback resistors to set the gain. however, care must be taken to insure that the pole that is formed by the feedback resis- tors and the input capacitance does not degrade the stability of the amplifier. for example, if a single supply, noninverting gain of two is set with two 10k resistors, the LT1215/lt1216 will probably oscillate. this is because the amplifier goes open-loop at 7mhz (6db of gain) and has 50 of phase margin. the feedback resistors and the 10pf input capacitance generate a pole at 3mhz that introduces 67 of phase shift at 7mhz! the solution is simple, lower the values of the resistors or add a feedback capacitor of 10pf or more.
15 LT1215/lt1216 u s a o pp l ic at i wu u i for atio comparator applications sometimes it is desirable to use an op amp as a compara- tor. when operating the LT1215/lt1216 on a single 3.3v or 5v supply, the output interfaces directly with most ttl and cmos logic. the response time of the LT1215/lt1216 is a strong function of the amount of input overdrive as shown in the 4 2 0 100 0 5 m s/div v s = 5v 1215/16 ai01 r l = 4 2 0 100 0 5 m s/div v s = 5v 1215/16 ai02 r l = LT1215 comparator response (+) 20mv, 10mv, 5mv, 2mv overdrives LT1215 comparator response (C) 20mv, 10mv, 5mv, 2mv overdrives w i spl ii f ed s w a ch e ti c following photos. these amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. the output can be speeded up by adding 20mv or more of hysteresis (positive feedback), but the offset is then a function of the input direction. input (mv) output (v) output (v) input (mv) c i q5 q10 c f r f i 7 i 8 c o v c m bias out v + i 6 i 5 i 4 i 3 i 2 i 1 ?n +in 1215/16 ss q7 q9 q8 q11 q12 q14 q15 q13 q16 q6 q3 q4 q1 q2
16 LT1215/lt1216 single supply, ac coupled input, rms calibrated, average detector ac in (mv rms ) 1 10 dc out (mv) 100 1000 10 100 1215/16 ga06 v s = 5v f = 100khz f = 1khz dc output voltage vs ac input voltage + 20k 5v a lt1216 11.3k 22pf 1215/16 ta05 2 r2 20k 22pf dc out + + 1 m f + r1 10k r1 10k r1 10k r1 10k 22pf r2 10k c lt1216 2 r2 20k 11.3k 22pf v a ?v b r2 r1 ? 100k v in + 10 m f 1k b lt1216 d lt1216 v b ac to dc biased differential signal differential input, absolute value circuit v a 10k r2 10k + typical applicatio u
17 LT1215/lt1216 package descriptio u j8 package 8-lead cerdip (narrow .300 inch, hermetic) (reference ltc dwg # 05-08-1110) j8 1298 0.014 ?0.026 (0.360 ?0.660) 0.200 (5.080) max 0.015 ?0.060 (0.381 ?1.524) 0.125 3.175 min 0.100 (2.54) bsc 0.300 bsc (0.762 bsc) 0.008 ?0.018 (0.203 ?0.457) 0 ?15 0.005 (0.127) min 0.405 (10.287) max 0.220 ?0.310 (5.588 ?7.874) 12 3 4 87 65 0.025 (0.635) rad typ 0.045 ?0.068 (1.143 ?1.727) full lead option 0.023 ?0.045 (0.584 ?1.143) half lead option corner leads option (4 plcs) 0.045 ?0.065 (1.143 ?1.651) note: lead dimensions apply to solder dip/plate or tin plate leads obsolete package
18 LT1215/lt1216 package descriptio u n8 package 8-lead pdip (narrow .300 inch) (reference ltc dwg # 05-08-1510) n package 14-lead pdip (narrow .300 inch) (reference ltc dwg # 05-08-1510) n8 1098 0.100 (2.54) bsc 0.065 (1.651) typ 0.045 ?0.065 (1.143 ?1.651) 0.130 0.005 (3.302 0.127) 0.020 (0.508) min 0.018 0.003 (0.457 0.076) 0.125 (3.175) min 12 3 4 87 6 5 0.255 0.015* (6.477 0.381) 0.400* (10.160) max 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.035 0.015 +0.889 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm) n14 1098 0.020 (0.508) min 0.125 (3.175) min 0.130 0.005 (3.302 0.127) 0.045 ?0.065 (1.143 ?1.651) 0.065 (1.651) typ 0.018 0.003 (0.457 0.076) 0.100 (2.54) bsc 0.005 (0.125) min 0.255 0.015* (6.477 0.381) 0.770* (19.558) max 3 1 2 4 5 6 7 8 9 10 11 12 13 14 0.009 ?0.015 (0.229 ?0.381) 0.300 ?0.325 (7.620 ?8.255) 0.325 +0.035 0.015 +0.889 0.381 8.255 () *these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed 0.010 inch (0.254mm)
19 LT1215/lt1216 package descriptio u information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. s8 package 8-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610) s package 16-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610) 0.016 ?0.050 (0.406 ?1.270) 0.010 ?0.020 (0.254 ?0.508) 45 0 ?8 typ 0.008 ?0.010 (0.203 ?0.254) so8 1298 0.053 ?0.069 (1.346 ?1.752) 0.014 ?0.019 (0.355 ?0.483) typ 0.004 ?0.010 (0.101 ?0.254) 0.050 (1.270) bsc 1 2 3 4 0.150 ?0.157** (3.810 ?3.988) 8 7 6 5 0.189 ?0.197* (4.801 ?5.004) 0.228 ?0.244 (5.791 ?6.197) dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * ** 0.016 ?0.050 (0.406 ?1.270) 0.010 ?0.020 (0.254 ?0.508) 45 0 ?8 typ 0.008 ?0.010 (0.203 ?0.254) 1 2 3 4 5 6 7 8 0.150 ?0.157** (3.810 ?3.988) 16 15 14 13 0.386 ?0.394* (9.804 ?10.008) 0.228 ?0.244 (5.791 ?6.197) 12 11 10 9 s16 1098 0.053 ?0.069 (1.346 ?1.752) 0.014 ?0.019 (0.355 ?0.483) typ 0.004 ?0.010 (0.101 ?0.254) 0.050 (1.270) bsc dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side * **
20 LT1215/lt1216 ? linear technology corporation 1993 12156fb lt/tp 1101 1.5k rev b ? printed in usa lt1216 photo diode amplifier + 2v 5v 1/4 lt1216 5.1k 8pf v out 1215/16 ta03 i to v bandwidth = 7mhz transient response linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax: (408) 434-0507 l www.linear.com related parts part number description comments lt1211/lt1212 dual/quad 14mhz, 7v/ m s single supply precision op amps input common mode includes ground, 275 m v v os (max), 6 m v/ c max drift, 1.8ma max supply current per amplifier lt1213/lt1214 dual/quad 28mhz, 12v/ m s single supply precision op amps input common mode includes ground, 275 m v v os (max), 6 m v/ c max drift, 3.5ma max supply current per amplifier lt1498/lt1499 10mhz, 6v/ m s, dual/quad rail-to-rail input and 475 m v v os (max), 2.2ma max supply current per amplifier, output precision c-load tm op amps 2.5 m v/ c max drift, stable with capacitive loads to 10,000pf lt1124/lt1125 12.5mhz, 4.5v/ m s, dual/quad low noise, 70 m v v os (max), 2.75ma max supply current per amplifier, high speed precision op amps 1 m v/ c max drift lt1355/lt1356 dual and quad 12mhz, 400v/ m s op amps 1.25ma max supply current per amplifier, 800 m v v os (max), drives all capacitive loads lt1358/lt1359 dual and quad 25mhz, 600v/ m s op amps 2.5ma max supply current per amplifier, 600 m v v os (max), drives all capacitive loads lt1361/lt1362 dual and quad 50mhz, 800v/ m s op amps 5ma max supply current per amplifier, 1mv v os (max), drives all capacitive loads c-load is a trademark of linear technology corporation. 1215/16 ta05 typical applicatio u


▲Up To Search▲   

 
Price & Availability of LT1215

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X